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Abstract—Political scientists and security agencies increasingly
rely on computerized event data generation to track conflict
processes and violence around the world. However, most of these
approaches rely on pattern-matching techniques constrained by
large dictionaries that are too costly to develop, update, or expand
to emerging domains or additional languages. In this paper,
we provide an effective solution to those challenges. Here we
develop the 3M-Transformers (Multilingual, Multi-label, Multi-
task) approach for Event Coding from domain specific multi-
lingual corpora, dispensing external large repositories for such
task, and expanding the substantive focus of analysis to organized
crime, an emerging concern for security research. Our results
indicate that our 3M-Transformers configurations outperform
state-of-the-art usual Transformers models (BERT and XLM-
RoBERTa) for coding events on actors, actions and locations in
English, Spanish, and Portuguese languages.

Index Terms—event coding, transfer learning, natural language
processing, organized crime, deep neural networks, multi-task
learning

I. INTRODUCTION

The rapid evolution of data volume, variety, and velocity
available from many different sources requires developing new
techniques to extract and collect knowledge from such sources.
This is particularly critical for political scientists studying
violent conflicts at a global scale due to the rapidly increasing
variety of actors, behaviors, and locations they study. Conflict
scholars have developed computerized approaches to code
event data [1]–[7], which consists of automatically identifying
events from unstructured input text and extract structured
data, providing a description of someone doing something to
someone else in a given location and time. However, studying
conflict processes from a computational social science per-
spective represents additional challenges to natural language
processing (NLP). First, incidents of organized violence are
ubiquitous around the world, which requires NLP tools capable
of multilingual processing. Furthermore, conflict processes
often involve a plurality of armed actors engaging in a variety
of violent tactics, thus NLP tools need to perform well on
identifying and extracting all these multiple event components
reported in conflict news articles.

State-of-the-art generation of conflict datasets generally rely
on computerized event coding systems, which identify, extract
and categorize conflict interactions from unstructured text,
converting them into computer friendly structured represen-
tations. Automated coder systems such as PETRARCH, PE-

TRARCH2 [8], Universal PETRARCH 1, Eventus ID [6], and
Hadath [7], typically require extensive external dictionaries
that serve as knowledge bases to extract critical facts from
raw text, such as, who are the actors, in what type of actions
are they involved, and where did the event occur.

The dominant ontology for political event data is CAMEO
(Conflict and Mediation Event Observations) [9], a coding
structure that incorporates a knowledge base composed of
actor dictionaries (containing about 67K entries) and action-
pattern dictionaries (about 14K verb phrases). The former acts
as a data repository for political entities, while the latter is used
to store representations of political actions or interactions.

Technically, these dictionaries inform a pattern-matching
approach aiming at identifying the presence of certain lexico-
syntactic patterns in a sentence, indicating a particular se-
mantic relationship between two nouns. Unfortunately, the
complexity of unstructured text generally exceeds the capacity
of these dictionary-based coders, often producing low-recall
results. In addition, updating and extending these hand-built
pattern repositories is too expensive and time-consuming,
which quickly renders them obsolete in context of rapidly
changing conflict processes. Furthermore, despite the efforts
of coding event data in non-English languages [6], [7], [10], to
the best of our knowledge, the systems and ontologies used in
political science do not support coding events on multilingual
corpora, which imposes limitations when working with sources
coming from different countries and languages.

Recent advances in deep neural network and natural lan-
guage understanding techniques open new possibilities to solve
some of the core challenges of the traditional event coding
approach. In particular, transformers [11] based architectures
(such as BERT [12] and XLM-RoBERTa) introduced a new
approach of pre-training language models for obtaining state-
of-the-art results on a wide range of NLP tasks.

In this paper, we introduce the 3M-Transformers
(Multilingual, Multi-label, Multi-task) by effectively
combining transfer learning and multi-task learning techniques
for event coding from multilingual, domain-specific corpora.
We explore transfer learning by leveraging pre-trained
transformers based models, which in general provide good
results requiring small size annotated dataset. Our approach

1https://github.com/openeventdata/UniversalPetrarch
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still employs parallel residual adapters attached to the
transformers based network, favoring multi-task learning and
allowing the network to learn document representations in a
more effective manner for the purpose of event coding task.

We demonstrate the superiority of 3M-Transformers on a
real-world dataset in organized crime domain, which repre-
sents a type of conflict process increasingly attracting the
attention of political scientists. Although we focus our exper-
iments on this specific domain, the design of our approach is
flexible enough to generalize over small size annotated corpora
in any domain.

Overall, this paper includes four key contributions. First,
by focusing on English, Spanish and Portuguese languages,
we design an innovative supervised approach for event cod-
ing in multilingual, domain-specific corpora inspired by the
combination of techniques from distinct domains, including:
natural language understanding, multi-task learning, transfer
learning and computer vision concepts (parallel attention lev-
els, residual adapters, and squeeze and excitation). Second,
in contrast of the heavy reliance on large actor and action
dictionaries, our approach requires a minimalist use of class
categories. Third, our application extends the menu of actors
and actions traditionally studied in political science by advanc-
ing the analysis of organized crime using computational social
sciences. Finally, we provide a human-annotated organized
crime dataset2, which may help advance other event extraction
approaches and social science studies.

Based on the experiments performed in this paper, our 3M-
Transformers models consistently outperform state-of-the-art
transformers models in all evaluated performance measures
for event coding task. Furthermore, the models maintain good
performance values when analyzing the results separately by
language, showing evidences that 3M-Transformers models
generalize well in multilingual corpora.

The rest of the paper is structured as follows. Section II
discusses previous works related to information extraction,
extensively covering previous efforts involving coding event
data in political and social sciences. Section III outlines the
problem addressed in this research and defines our modeling
strategy. Section IV describes process for obtaining and anno-
tating the organized crime dataset. Section V provides detailed
design of the 3M-Transformers. Section VI presents the results
of the proposed approach, and Section VII concludes the
paper.

II. RELATED WORKS

Generally, event extraction consists of detecting the ex-
istence of an event reported in the text through an event
trigger component, that works together with argument and
role detectors for capturing potential arguments related to
such event. Recent works employing deep neural networks
show remarkable results on event extraction related tasks by
exploring recurrent neural networks [13], [14], graph neural

2https://figshare.com/s/73f02ab8423bb83048aa

networks [15], [16], hybrid neural networks [17]–[19] and
attention mechanism [20].

From the perspective of political and social sciences, con-
flict scholars are primarily interested on extracting events from
text, in such a structured format, that allows tracking conflict
processes and violence through computational methods. For
that purpose, most of the previous works for coding event
data are based on pattern matching approach [6]–[8], usually
supported by lengthy external repositories or domain-specific
ontologies [9]. Some previous efforts [21]–[26] focus on
proposing automatic methods for maintaining and extending
such ontologies in order to improve the coding event process
in political science domain.

In essence, identifying and properly coding events of politi-
cal violence and protest can also be expressed as classification
task. Traditionally, studies focused on classification task rely
on classical machine learning and deep learning techniques.
Hanna [2] proposes a framework based on support vector
machines (SVM) for identifying and coding protest events.
Beieler [3] resorts to the application of convolutional neural
networks (CNN) to classify pre-selected sentences into the
QuadClass political events, while Radford [4] trains a recur-
rent neural networks (RNN) to identify indicators of protest
events in English text data. O’Connor et al. [27] describe
an unsupervised model for detecting events between major
political actors from news corpora. Glavaš et al. [28] develop
a multilingual framework based on SVM and CNN for topical
coding of sentences from electoral manifestos of political
parties in different languages (English, French, German and
Italian). Osorio et al. [7] introduce a logistic regression based
framework to code events from conflict related news in Arabic
language.

From the perspective of knowledge representation and
ontology-based tools applied to crime domain, most efforts
focus on modeling and constructing ontologies for criminal
law and legal domains [29]–[32]. Some of these works dedi-
cated to ontology modeling cover more specific categories of
crime, like social media related crimes [33], property crime
[34], or organized crime [35].

With recent advances in deep neural networks and tech-
niques like transferring learning, innovative natural language
understanding tools are driving real transformations in NLP
applications and delivering state-of-the-art results on a wide
range of natural language tasks in various domains. Specifi-
cally in political science, recent works [36], [37] utilize BERT,
ELMo and DistilBERT as resource for extracting representa-
tions from documents, which are latter used as input features
for traditional machine learning non-linear classifiers. Still in
political science field, other works [38], [39] evidence the
power of transformers tools by applying them in distinct tasks
like events clustering and coreference resolution.

Outside political and social sciences, recent works focus on
proposing approaches for event extraction on multilingual data.
Zhu et al. [40] explore machine translation through Google
Translate for obtaining text representations with bilingual
word features for latter training Chinese and English corpora
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altogether. Di et al. [41] proposes a cross-lingual transfer
learning method for information extraction using transformer
as encoder [42] and position-wise feed-forward sub-layers
to capture the event trigger and output the argument roles
for the given input sentence. Some efforts [43]–[45] propose
deep learning approaches for information extraction related
tasks on cross-lingual corpora and other works directly apply
cross-lingual bootstrapping on multilingual corpora without
resorting to machine translation [46]–[48].

The method introduced in this paper improves the efforts
aforementioned by combining state-of-the-art natural language
understanding models with multi-task learning for coding
document level events in structured format from raw-text data.
In addition to the multilingual flexibility, our method bypasses
high cost and extensive human effort associated with creating
and updating external knowledge bases and repositories.

III. PROBLEM DEFINITION AND PROPOSED MODELING
SOLUTION

Event coding task aims at extracting structured represen-
tations of events in a predetermined template, commonly in
triplet format like (who, did-what, to-whom) or (who, did-what,
where). These event representations are usually expressed as
a group of codes or categories, each of which corresponding
to the argument identified for their roles (who, did-what or
where). The main purpose of event coding task is to provide
enough amount of structured data, allowing conflict scientists
to apply computational methods to analyze, monitor and
design forecasting models for conflict processes and violence
involving social and political entities across the globe.

Therefore, we define the event coding problem addressed in
this paper as a specific case of document-level event extrac-
tion. Given an input document, the event coder identifies the
arguments and actions that fill any event component associated
with the event expressed in the document (e.g. who, did-what
or where), outputting the codes (or categories) corresponding
to such arguments. For example, suppose that we have the
following snippet of text in a document:

"... members of the criminal MS-13 gang killed
their victims and threw their bodies into
a canyon in the Angeles National Forest, ..."

Assuming that we are interested in coding events in (who,
did-what, where) template, the desired output for such docu-
ment containing the snippet above should be:

WHO: 32 - MS13 DID-WHAT: 04 - HOMICIDES
WHERE: 16 - USA

Note that the output of event coding task is always expressed
in structured format (through categories or classes), instead of
spans of text for each event component (or role). The exact
same event should be coded in a document containing the
following sentence:
"Mara Salvatrucha gang members were indicted

for six murders on Long Island ..."

Given political scientists’ interest on coding events around
the world, one of the challenges is to extract information from

multilingual corpora. Another challenge refers to the need of
annotating different event dimensions, such as actor, action,
and location of each event. Finally, given the complexity of
the behaviors of interest, each dimension can be assigned to
multiple labels (e.g., an action can be labeled as ”homicide”,
”kidnapping”, ”extortion”, etc.).

The primary goal of our work is to design an event ex-
traction solution that facilitates coding document level events
on multilingual domain-specific news articles via supervised
learning, dispensing the use of large dictionaries as knowledge
bases. Although our supervised learning approach requires
a minimally annotated data as training input, it dismisses
the construction of wide-ranging knowledge bases, usually
required on pattern-matching based techniques.

To facilitate the usage of supervised learning as our pro-
posed modeling solution, we convert the domain of all an-
notation components (entities, actions, and locations) that can
be potentially captured as part of an event into a labelset.
Thus, instead of a set of annotations, each document will be
associated to a set of labels (based on a pre-defined structure)
corresponding to its annotations. Lastly, we train a multi-label
classifier to predict such labels assigned to text documents.

Formally speaking, let D = {(x1, y1), . . . , (xn, yn)} be
a multilingual domain-specific corpora composed by n news
articles where X = {x1, . . . , xn} corresponds to the raw-text
corpora and Y = {y1, . . . , yn} refers to the event annotations
assigned to their corresponding documents. Each labelset yi
keeps the record of the annotated event components (entity,
action, and location) as event in the news article xi through a
binary word of size k, where each one of its positions flags the
existence of a particular entity, action, and location. In other
words, yi ∈ {0, 1}k with labelset L and |L| = k. We want to
construct a multi-label classifier, h, for predicting the multiple
binary labels that may be assigned to each document. Hence,
by correctly predicting such labels, we successfully capture
the events from the corpora. Although we aim to demonstrate
the model’s performance on a real-world dataset (see Section
IV), the design introduced in Section V is flexible enough to
generalize over annotated corpora in any domain and any event
template.

IV. DATA DESCRIPTION

The dataset in this study consists of news articles reporting
organized crime activity in both English and Spanish. The cor-
pora came from the Insightcrime3 web page through the Open
Event Data Alliance web-scraper program 4. InsightCrime is
a foundation specialized in studying and reporting organized
criminal activity involving gangs, cartels and other non-state
armed actors operating in Latin America and Caribbean. For
constructing our dataset, we collected 19, 940 documents from
July 2004 to March 2020 (13, 236 in English and 6, 704 in
Spanish).

As part of the labeling process, a political science committee
composed of three experts annotated the ground-truth tags

3https://www.insightcrime.org
4https://github.com/openeventdata/scraper
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corresponding to the criminal entities and crime categories
reported in the documents, as well as the locations (in country
level) of the occurrence. The coders worked independently
on annotations, reaching excellent standards in terms of inter-
annotation agreement, as we show below:

• Exact Match Ratio: 97.6%
• Cohen’s Kappa (Annotator 1 & Annotator 2): 99.44%
• Cohen’s Kappa (Annotator 1 & Annotator 3): 99.50%
• Cohen’s Kappa Measure (Annotator 2 & Annotator 3):

99.16%
• Fleiss’ Kappa: 99.37%

Note that, because we work with multi-label data and the
annotated labels are not mutually exclusive, we computed
the kappa statistics separately for each and every label, and
then averaged them. In the few cases of disagreements, we
considered the majority of votes for each instance as final
ground-truth annotations.

Since the documents contain unstructured text and the
nature of their description varies, a fixed format for assigning
the annotations is not viable. To address this, the coders as-
signed up to three labels per event component (crime category,
criminal entities and location) for each news story. This means,
for example, that a document may report a specific crime
occurring in a given location without mentioning the perpetra-
tors (sometimes the authors of the crime are unknown), while
another document may report three related crimes (e.g. arms
trafficking, extortion, and homicides) occurring in distinct
locations (e.g. El Salvador and Honduras) involving two gangs
(e.g. Mara Salvatrucha and Barrio 18).

From the 19, 940 scrapped InsighCrime documents, we
manually annotated a random sample of 2, 533 news articles.
Overall, the annotations assigned to documents contain 16
distinct crime categories, 41 criminal entities, and 33 countries
(including the U.S. and some European countries). This is a
minimalist classification set when compared to the CAMEO
dictionaries and other domain-specific repositories in political
science sphere. Fig. 1 illustrates the percentage of documents
annotated with each crime category.

Due to space limitations, we omit the plots of criminal en-
tities and countries in this section. Instead, we report here the
most and least frequent annotations for these two dimensions.
For criminal entities, the most frequent annotations are FARC
(5.17%), Cartel de Sinaloa (4,78%) and Zetas (4,07%), while
the least frequent are Barrio Azteca (0.04%), Los Machos
(0.04%) and Leones (0.04%). For countries, the most frequent
are Mexico (24.99), Colombia (17.37%) and USA (12.23%),
while the least frequent are the UK (0.12%), Portugal (0.08%)
and Germany, (0.04%).

Given the imbalanced distribution observed in all event
components, we re-arranged the annotations by grouping the
least frequent tags into larger groups. We generated a pre-
liminary grouping through unsupervised learning (k-means++)
running over the documents representations obtained through
the BERT base pre-trained model (bert-base-multilingual-
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Fig. 1: Distribution of documents by category of crime.

cased 5). Then, political science experts fine-tuned the initial
grouping suggestions and designed the final grouping sets.

The final crime category groups used in the study are:
• Drug Trafficking;
• Corruption;
• Law Enforcement;
• Homicides;
• Economic Related Crimes (Counterfeit, Extortion, Kid-

napping, Money Laundering and Cyber Crime);
• Natural Resources Crimes (Eco-Trafficking, Illegal Min-

ing and Oil Theft);
• Crime Mobility (Arms Trafficking, Contraband, Criminal

Migration, Human Trafficking).
For criminal entities, political science experts grouped to-

gether names of criminal organizations, leaders, and main
members belonging to major gangs or organized criminal
groups, which totaled 15 criminal organizations. For countries,
we kept the original label for each Latin American country, but
grouped together all European countries in a single category
given their low individual frequency. This yielded a total of
16 location groups.

Finally, due to the limited number of manually-annotated
tags, we applied a semi-supervised label propagation algorithm
[49] to propagate the human annotations to the whole corpora.
We obtained the document features through the BERT base
pre-trained model following the same procedure implemented
for clustering analysis as mentioned above.

Technically, let (x1, y1), . . . , (xl, yl) be the annotated doc-
uments, where Yl = {y1, . . . , yl} and l = 2, 533. Let
(xl+1, yl+1), . . . , (xl+u, yl+u) be the scraped and non-
annotated documents, where Yu = {yl+1, . . . , yl+u} and
u = 17, 407. Lastly, let X = {x1, . . . , xl+u} where xi ∈ IRdm

corresponds to the documents representations with dimension
size dm extracted through the BERT model. We use label
propagation to estimate Yu from X and Yl. By using the whole

5https://huggingface.co/bert-base-multilingual-cased
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scraped corpora X with their corresponding propagated labels
as major part of training set, we increased (on average) 2
percentage points in F1-score for all the models experimented
in Section VI (taking as baseline the results obtained with the
annotated documents only).

For the experiments reported in this paper, we perform 14
rounds of cross-validation, by randomly splitting the annotated
data between train (60%), development (20%) and test (20%)
in each round. All the remaining scraped documents not
belonging to the annotated portion is reserved only for training
purpose in all the rounds. Thus, 100% of the testing set in
all the rounds is composed by annotated data only, ensuring
the veracity of performance measures reported in our
experiments.

In order to better analyze the multilingual functionality of
the proposed method and to cover all the major languages
spoken in Latin America, we also scraped news articles
in Portuguese. As data source, we have chosen the crimes
section of three prestigious news websites in Brazil: El Pais6,
Veja7 and UOL8. Only one coder annotated documents in
Portuguese, therefore such dataset is used only for validating
the proposed methodology, discussed in Section VI.

V. APPROACH AND DESIGN

As described in Section III, we devise a modeling solution
based on supervised learning for coding event data from mul-
tilingual news articles. The design of our proposed approach
is detailed in Subsections V-A to V-C, while subsection V-D
closes this section by briefly describing the baseline methods
used as reference for comparison in our experiments.

A. 3M-Transformers for Event Coding
In this paper, we design the 3M-Transformers (Multilingual,

Multi-label, Multi-task) by combining multi-task learning with
machine transfer learning techniques to efficiently extract
events in structured format from multilingual corpora.

We employ transfer learning by leveraging the transformers
based architectures as part of our design, requiring only a
small annotated corpora for fine-tuning pre-trained multilin-
gual models.

Furthermore, 3M-Transformers explore multi-task learning
to extract different representations from the same document
through residual adaptations (each one adjusted to each event
component) over the same transformers based network as
base of the model. Although we work with a domain-specific
corpora, we conjecture that the feature spaces and data distri-
bution characteristics for each of event component are not the
same.

Therefore, our proposed architecture implements parallel
residual adapters [50] attached to transformers based mod-
els to favor multi-task learning. Fig. 2 illustrates the 3M-
Transformers design: we keep BERT model (inner gray block)
as base of the network and connect in parallel, for each event

6https://brasil.elpais.com/
7https://www.uol.com.br/
8https://veja.abril.com.br/

component, adapters which will attend and independently learn
their own concepts. Thus, given the same document as input,
such network outputs different representations (one for each
event component), which will feed their corresponding linear
layers (again, one Feed Forward Network for each event
component), each one working as multi-label classifiers.

Without loss of generality, the network in Fig. 2 illustrates
the event code extraction in the (who, did-what, where) tem-
plate, which resembles the output format expected from using
as input the dataset described in Section IV.

Fig. 2: 3M-Transformers design (with BERT)

Technically, the original BERT base architecture is com-
posed by 12 layers, each of which implements self-attention
layer over the input hidden representation, followed by a layer-
norm (LN) with residual connection, as expressed next:

BertLayer(h) = LN(h+ SelfAttention(h)) (1)

where h corresponds to the hidden representation given as
input.

As expressed in Fig. 2, we attach a residual adapter function
(for each event component) in parallel to each BertLayer
before applying the layer-norm (LN), which results as follows:

hout = LN(hin + SelfAttention(hin) + f(hin)) (2)

where hout is the output hidden representation obtained after
the layer-norm over the original BERT layer output and the
parallel residual adapter function f(·).

Because BERT, as well as other transformers based architec-
tures, are prominent in recent NLP researches and our design is
based on its original implementation9, we omit further detailed
description about these model architectures.

9https://github.com/huggingface/transformers
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B. Residual Adapter Configurations
We implement two residual adapter functions as essential

components of 3M-Transformers. The first one is based on
the projected attention layer [51], which consists of a low-
dimensional multi-head attention layer that is attached in
parallel to BERT layers. This residual adapter function is
expressed as follows:

fpal(h) = V DMH(V Eh), (3)

where h ∈ IRdm represents the hidden layer that is first
encoded through a matrix multiplication with V E ∈ IRds×dm ,
which in turn will feed a low dimensional multi-head atten-
tion layer MH(·) based on transformers architecture. Finally
V D ∈ IRdm×ds serves as decoder and returns the original
dimension of h to feed the layer norm layer expressed in Eq.
2. Although we attach f(·) as a residual adapter module over
each one of the 12 BERT-layers, in this configuration both V E

and V D are shared across the BERT layers.
Because we dedicate one task for each event component

and the majority of the network parameters are shared among
tasks, our second configuration was designed seeking the
recalibration of the feature responses in each BERT-layer for
different tasks. Therefore, we borrow squeeze-and-excitation
[52] concept from computer vision domain and tailor it to
natural language processing application to devise the following
SE-based residual adapter function:

fse(H) = Fe(Fs(H),W )� h0, (4)

Different than fpal(·), function fse(·) receives H =
[h0, . . . , hdT ] ∈ IRdm×dT as input, where dm = 768 (standard
BERT hidden size) and dT = 512 (maximum number of
tokens in the document). In other words, fse(·) receives the
representations of all the tokens in the input document, instead
of pooling them and working only with the hidden state
corresponding to the first special token ([CLS]), usually output
as hidden state in each BertLayer (as described in section 3
of [12]). Therefore, such residual adapter configuration allows
learning document representations in a more effective manner,
by exploring hidden representations of all the tokens in the
input document for all the transformers hidden layers.

Precisely, Fs(·) averages the representations of all dT tokens
to obtain z ∈ IRdm , where the i-the element of z is simply
computed as follows:

zi =
1

dT

dT∑
t=1

Hit, (5)

The excitation step represented by the function Fe learns
a nonlinear and non-mutually-exclusive relationship between
features through a simple gated mechanism using the sigmoid
activation, as expressed in Eq. 6:

Fe(z,W ) = σ(W2(δ(W1z)), (6)

where z represents the output from the squeeze step, δ refers
to the ReLU function, W1 ∈ IR

dm
r ×dm and W2 ∈ IRdm× dm

r .
In practice, we have two fully connected layers around the

non-linearity, where the first one performs a dimensionality
reduction with parameters W1 with reduction ratio r while the
second executes a dimensionality increasing with parameter
W2. As output, function Fe(·) returns a vector of dimension
dm.

The final output of fse(·) is obtained by rescaling the hidden
state corresponding to the special token ([CLS]) represented
as h0 in Eq. 4 with the activations output from Fe(·) through
a feature-wise multiplication (Hadamard product). Note that
h0 ∈ IRdm is indeed exactly the same hidden representation
as h expressed in Eq. 3.

Finally, fse(·) serves as an adapter block plugged as f(·)
in Eq. 2 to compose an additional configuration of 3M-
Transformers.

Attaching such external adapters to transformers base ar-
chitectures results in a slight complexity increase in terms of
number of parameters in the overall network. Specifically for
PALs models, such complexity increasing may be expressed
as follows:

EC × (2dmds + 12× 3d2s), (7)

while the same increasing in complexity order is expressed as
follows for SE configurations:

EC × (12× (2dm(dm/r))), (8)

where EC means the number of event components (or event
tasks), dm represents the default base transformers hidden
dimension with 12 layers, ds defines the dimensions of V D

and V E on PAL designs and r expresses the reduction ratio
on configurations using SE based adapters.

In our experiments we set ds = 204 and r = 18.
Considering EC = 3 and dm = 768, we have an increase
of no more than 2.1% in total parameters on the original
BERT base (110 million parameters) when applying SE-based
adapter.

C. Transformers architectures
We combine the residual adapter configurations expressed

in previous subsection to two transformers based architectures:
BERT and XLM-RoBERTa. Later in Section VI, we explicitly
call each experimented model based on their transformer
base architecture followed by the suffix “ SE” or “ PAL”
depending on the adapter they used.

To address the multilingual aspect of the problem, we
simply used the BERT multilingual and XLM-RoBERTa base
pre-trained models as initial weights for fine-tuning our 3M-
Transformers implementations (see Subsection VI-A).

D. Baseline Approaches
As baseline approaches, we considered three transformers

based implementations. The first method consists on Multi-
label BERT for Sequence Classification, where we simply
fine tune the BERT base multilingual pre-trained model for
extracting documents representations followed by a sequence
multi-label classifier on the top of that. Latter in Section VI,
we refer to this model as Simple-BERT.
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In the same manner as we did for Simple-BERT, we
create Simple-XLM-RoBERTa by replacing BERT by XLM-
RoBERTa, as our second baseline.

Lastly, we implement the event coding approach introduced
in [37], which explores BERT pre-trained model for extracting
documents representations and apply SVM for predicting the
event components. We slightly adapt the original implemen-
tation by using the multilingual pre-trained model instead of
using the common BERT base trained in English language
only.

To the best of our knowledge, there is no organized crime
ontology or knowledge base which supports coding events on
multilingual corpora, precluding any implementation based on
pattern-matching approach as baseline.

VI. EXPERIMENTS

In this section, we describe the computational setup used
on the experiments and the metrics applied for performance
evaluation (Subsections VI-A and VI-B respectively). Lastly,
in Subsection VI-C, we present the results of our experiments
run over the real-world organized crime dataset.

A. Setup

To conduct the experiments presented in this paper we
used a computer with NVIDIA Quadro RTX 8000 GPU. The
base architecture (excluding the residual adapters) for the
BERT and XLM-RoBERTa networks were entirely based on
their original design and implementation, publicly available
on transformers repository10. We fine-tune all of our 3M-
Transformers configurations for 30 epochs with mini-batch
size of 4 and gradient accumulation set to 8 given the large
value of maximum sequence length dT = 512, required for
dealing with long text sizes in organized crime domain. We
choose the best model found during training step based on F1-
score observed on development set. We use Adam optimizer
with learning rate set to 1e − 5, β1 = 0.9, β2 = 0.999 and
ε = 1e − 6. Given the high imbalance rate of the input data,
we experimented training the models with focal loss function
[53], but we observed better results using binary cross entropy
as loss function.

We train our models in multi-task fashion based on round
robin approach: the batches of each task are simply selected in
the same order in a cycle, which means that every epoch will
select equivalent number of examples for all the three tasks
(event components) during training process.

Furthermore, we use the following publicly available pre-
trained models as initial weights on the bases of the architec-
tures detailed in the Subsections V-B and V-D:

• BERT base multilingual cased11: Pre-trained on 104
languages, with 12 layers (12 attention heads each) and
hidden states dimensions of size dm = 768.

10https://huggingface.co/transformers/
11https://huggingface.co/bert-base-multilingual-cased

• XLM-RoBERTa base multilingual cased12: Pre-trained on
100 languages, with 12 layers (12 attention heads each)
and hidden states dimensions of size dm = 768.

For all 3M-Transformers implementations (which are based
on multi-task technique), we set the number of steps per epoch
to 5, 000. It totals 20, 000 cycles per epoch (mini-batch size
× steps per epoch), which is equivalent to the training set
size, allowing a fair comparison with the baseline methods.
Furthermore, for each configuration, we report the average
of the results on the testing sets over the 14 cross-validation
rounds (as described in Section IV).

Specifically for SE-based configurations, we set the reduc-
tion rate r = 18, which presented, on average, the best results
over the other values experimented for this hyper-parameter
([6, 12, 18, 24]).

On configurations using project attention layers, we use
6 attention-heads with ds = 204 for each block denoted as
MH(·) expressed in Eq. 3.

We apply k-means++ and label propagation implementa-
tions from Scikit-learn library to perform some steps of dataset
construction, as detailed in Section IV.

B. Performance Evaluation

Dealing with multi-label classification requires using suit-
able performance measures for properly evaluating the trained
models. Therefore, following previous references [54], we
adopt example-based measures for evaluating the models:

A =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

, P =
1

n

n∑
i=1

|Yi ∩ Zi|
|Zi|

R =
1

n

n∑
i=1

|Yi ∩ Zi|
|Yi|

, F1 =
1

n

n∑
i=1

2 |Yi ∩ Zi|
|Yi|+ |Zi|

MR =
1

n

n∑
i=1

I(Yi = Zi)

where n represents the size of the multi-labeled corpora
composed by instances (xi, Yi), 1 ≤ i ≤ n, xi ∈ IRdm

denoting the document representations, Yi ∈ {0, 1}k with
labelset L and |L| = k. Assuming h is our multi-label
classifier, we let Zi = h(xi) = {0, 1}k be the set of label
memberships predicted by h for the example xi.

The measures accuracy (A), precision (P), recall (R) and F1-
score (F1) account for partial correctness. Alternatively, the
exact match ratio (MR) represents the most strict measure,
taking into consideration the indicator function I , which
doesn’t distinguish complete incorrect and partially correct.

C. Experiments on Organized Crime Dataset

We start by evaluating the performance measures for the
configurations detailed in Section V compared to the baseline
methods.

12https://huggingface.co/xlm-roberta-base
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TABLE I: 3M-Transformers vs. baselines: overall performance
for coding event data on organized crime dataset

MODELS A P R F1 MR
Simple-BERT 72.53 83.93 83.23 80.99 39.77
Simple-XLM-Ro 72.70 84.06 83.49 81.23 39.81
BERT SVM [37] 53.43 78.23 60.11 63.33 23.62
3M-BERT PAL 74.40 86.49 83.26 82.35 43.61
3M-BERT SE 74.44 86.34 83.55 82.39 43.21
3M-XLM-Ro PAL 74.27 86.58 83.51 82.32 43.64
3M-XLM-Ro SE 73.98 86.78 83.53 82.31 42.49

Results in bold font indicate the best performing model.

Table I shows the overall results obtained by evaluating
the event components (event tasks) altogether. Overall, 3M-
BERT SE outperforms all the experimented models in accu-
racy, recall and F1-score, showing more than three percentage
points improvement in exact match ratio (MR) when compar-
ing to Simple-BERT and Simple-XLM-Ro.

Furthermore, all 3M-Transformers models consistently pre-
sented better results than those obtained by fine-tuning state-
of-the-art transformers models (BERT and XLM-RoBERTa)
for the purpose of event coding task. The performance
superiority is statistically significant when looking at the
most strict measure (Match Ratio): both 3M-BERT SE and
3M-BERT PAL outperform Simple-BERT as well as 3M-
XLMro PALs and 3M-XLMro SE significantly outperform
Simple-XLM-Ro at 0.001 level (based on t-test).

Although 3M-Transformers models learn the parameters of
all event tasks altogether along the same training process, we
can evaluate how is the performance of these models broken
by task. For that purpose, Table II presents the performance
measures of each model, at the event components level.

For properly understanding this analysis, it is necessary
to add an extra detail about the organized crime dataset.
Because the nature of events related to organized crime varies,
there may be documents without annotations corresponding
to one of the event components. For instance, there may be
documents reporting a specific type of crime which occurred
in a place, without necessarily reporting any criminal entity.
Therefore, computing the performance measures and reading
the analysis presented in Table II may require a deeper
interpretation.

By definition, we use precision measure in our context
to evaluate the percentage of event elements which were
correctly predicted. Therefore, following the formula indicated
in Subsection VI-B, the computation of the precision measure
ignores those instances where |Zi| = 0, as well as the recall
measure ignores cases where |Yi| = 0.

Because only approximately 30% of the annotated docu-
ments contain criminal entities assigned to them, we see that
MR measures for all models are greater than F1-score mea-
sures in the “Criminal Entity (who)” event task. In practice, it
means that models can correctly identify documents without
criminal entities, which contributes for increasing the MR but
do not count to F1-score (because |Yi| + |Zi| = 0 for those
cases).

Even though none of the models consistently obtained the

best performance measures cross-event tasks, we note that the
best values for each measure are highly concentrated in the
3M-Transformers models.

Although we focus the performance discussion on example-
based measures (introduced in previous subsection), 3M-
Transformers models also presented good results along all
event components when analyzing label-based [54] measures.
When comparing 3M-BERT SE against Simple-BERT, the
former presented better results in F1-score for 6 out of the
7 labels related to crime categories, 9 out of the 16 labels
in location component and 9 out of the 15 labels in criminal
entities component.

In order to evaluate the multilingual capabilities of 3M-
Transformers, we analyze separately the performance mea-
sures across languages. As discussed in Section IV, the In-
sightCrime corpora is composed by documents both in English
(EN) and Spanish (ES) languages, which were used together
for fine-tuning all the models presented so far. To perform a
more comprehensive evaluation, we add to this analysis an
extra organized crime corpora in Portuguese (PT) language
(see Section IV) and fine-tune (with only 3 epochs) the
previous models with the training portion of the Portuguese
corpora.

TABLE III: 3M-Transformers’ overall performance by lan-
guage (3M-BERT SE and 3M-XLM-Ro SE)

MEASURES 3M-BERT SE 3M-XLM-Ro SE
EN ES PT EN ES PT

A 75.17 73.27 64.90 75.09 72.05 65.86
P 86.70 86.17 91.92 87.20 86.63 91.21
R 84.44 81.72 67.39 84.05 81.05 68.63
F1 83.16 81.14 73.20 83.00 80.45 73.88
MR 42.77 44.94 37.86 43.50 41.41 38.94

Table III summarizes the overall performance of 3M-
BERT SE and 3M-XLM-Ro SE by language, showing that
both models generalize well in all experimented languages.
Although we observe better performance in EN and ES
languages (as expected), the models achieve good performance
in PT corpora with only a small extra fine-tuning effort. Such
results serve as empirical evidences to support not only the
3M-Transformers’ multilingual capability for coding events
task but also the robustness of these models to generalize on
input corpora from distinct sources with different distributions
over the labelsets (Portuguese corpora).

VII. CONCLUSIONS AND FUTURE WORK

Political scientists and government agencies in the security
sector are in constant need of gathering and analyzing event
data on conflict processes and violence around the world. To
that end, researchers increasingly rely on computer generated
data. However, most of these event coding protocols require
costly development, maintenance, and expansion of dictio-
naries of actors, actions, and locations. These hurdles often
prevent the generation of timely and accurate structured event
data to track conflict and violence.

In this paper, we propose an innovative technique to address
key challenges of computerized event data generation from
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TABLE II: 3M-Transformers vs. baselines: performance by task (event component level)

MODELS Criminal Entity (who) Crime Category (did-what) Location (where)
A P R F1 MR A P R F1 MR A P R F1 MR

Simple-BERT 62.03 73.73 80.31 63.90 85.99 63.70 76.34 73.40 67.30 55.26 89.22 93.59 94.18 91.55 82.22
Simple-XLM-Ro 60.34 72.49 79.25 62.21 85.17 64.80 76.42 74.22 68.31 56.51 89.14 93.58 94.04 91.50 82.02
BERT SVM [37] 34.49 73.97 39.95 36.25 80.11 48.06 67.58 51.79 50.10 45.08 69.88 87.75 74.26 73.08 60.82
3M-BERT PAL 66.07 81.91 78.85 68.22 88.25 65.37 78.38 73.96 68.69 57.82 90.18 94.81 94.06 92.31 83.80
3M-BERT SE 65.60 81.29 78.49 67.69 88.07 65.39 78.24 74.49 68.77 57.51 90.27 94.65 94.50 92.44 83.67
3M-XLM-Ro PAL 63.60 80.28 76.81 65.64 87.44 65.56 78.12 74.29 68.92 58.07 89.79 94.79 94.15 92.02 83.30
3M-XLM-Ro SE 64.06 80.74 77.04 66.08 87.64 64.33 77.81 74.08 68.32 56.60 90.13 95.07 94.24 92.24 84.05

Results in bold font indicate the best performing model.

multilingual domain-specific corpora. We do so combining
state-of-the-art natural language understanding models with
multi-task learning approach to efficiently extract events in
structured format. We demonstrate the application of such
proposed architecture through a real-world case study focused
on organized crime.

3M-Transformers (Multilingual, Multi-label, Multi-task) for
event coding implements transfer learning technique by lever-
aging multilingual transformers models, which provide high
quality results through fine-tuning process over small number
of labeled data. Furthermore, 3M-Transformers incorporate
parallel residual adapters dedicated to better explore the fea-
ture spaces of each event component through multi-task learn-
ing. We propose the SE-based residual adapter by borrowing
squeeze-and-excitation concept from computer vision domain
and tailoring it to natural language processing application. SE-
based adapters allow learning document representations in a
more effective manner, by exploring hidden representations of
all the tokens in the input document for all the transformers
hidden layers.

Our experiments on organized crime show indications that
3M-Transformers outperform state-of-the-art usual transform-
ers models for coding event data, by a minimal complexity
increasing in number of parameters. 3M-BERT SE consis-
tently shows better results than Simple-BERT as well as 3M-
XLM-Ro SE consistently outperforms Simple-XLM-Ro with
statistical significance.

Related to the multilingual challenge of event coding, 3M-
Transformers report good performance in both English and
Spanish languages, and do well in capturing the semantics of
other languages outside training corpora (Portuguese) requir-
ing only a small number of fine-tuning epochs. Results for the
Portuguese corpora are likely to increase once we have enough
annotated data on this language to use it as part of training
set.

An open discussion for future work is to analyze how
the performance of 3M-Transformers models will behave by
increasing the heterogeneity level (in terms of data source
and number of distinct languages) of the input corpora.
Furthermore, we intend to expand the case study to other
micro domains in political science sphere (e.g. terrorism,
insurgencies, protest movements and multinational military
exercises).
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[38] F. K. Örs, S. Yeniterzi, and R. Yeniterzi, “Event clustering within news
articles,” in Proceedings of the Workshop on Automated Extraction of
Socio-political Events from News 2020. Marseille, France: European
Language Resources Association (ELRA), May 2020, pp. 63–68.

[39] B. Radford, “Seeing the forest and the trees: Detection and cross-
document coreference resolution of militarized interstate disputes,” in
Proceedings of the Workshop on Automated Extraction of Socio-political
Events from News 2020. Marseille, France: European Language
Resources Association (ELRA), May 2020, pp. 35–41.

[40] Z. Zhu, S. Li, G. Zhou, and R. Xia, “Bilingual event extraction: a case
study on trigger type determination,” in Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2014, pp. 842–847.

[41] D. Lu, A. Subburathinam, H. Ji, J. May, S.-F. Chang, A. Sil, and C. Voss,
“Cross-lingual structure transfer for zero-resource event extraction,” in
Proceedings of The 12th Language Resources and Evaluation Confer-
ence, 2020, pp. 1976–1981.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Neural
Information Processing Systems (NIPS), pp. 5998–6008, 2017.

[43] M. M’hamdi, M. Freedman, and J. May, “Contextualized cross-lingual
event trigger extraction with minimal resources,” in Proceedings of
the 23rd Conference on Computational Natural Language Learning
(CoNLL), 2019, pp. 656–665.

[44] J. Ni, T. Moon, P. Awasthy, and R. Florian, “Cross-lingual relation
extraction with transformers,” arXiv preprint arXiv:2010.08652, 2020,
unpublished Manuscript.

[45] P. Verga, D. Belanger, E. Strubell, B. Roth, and A. McCallum, “Mul-
tilingual relation extraction using compositional universal schema,” In
Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2015.

[46] Z. Chen and H. Ji, “Can one language bootstrap the other: a case study
on event extraction,” in Proceedings of the NAACL HLT 2009 Workshop
on Semi-Supervised Learning for Natural Language Processing, 2009,
pp. 66–74.

[47] A. Hsi, J. G. Carbonell, and Y. Yang, “Modeling event extraction via
multilingual data sources.” in TAC, 2015.

[48] A. Hsi, Y. Yang, J. G. Carbonell, and R. Xu, “Leveraging multilin-
gual training for limited resource event extraction,” in Proceedings of
COLING 2016, the 26th International Conference on Computational
Linguistics: Technical Papers, 2016, pp. 1201–1210.

[49] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled data
with label propagation,” 2002.

[50] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Efficient parametrization of
multi-domain deep neural networks,” Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 8119–8127,
2018.

[51] A. C. Stickland and I. Murray, “Bert and pals: Projected attention layers
for efficient adaptation in multi-task learning,” Proceedings of the 36th
International Conference on Machine Learning, 2019.

[52] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[53] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[54] M. S. Sorower, “A literature survey on algorithms for multi-label
learning,” Oregon State University, Corvallis, vol. 18, pp. 1–25, 2010.

Authorized licensed use limited to: University of Arizona. Downloaded on August 05,2025 at 05:50:30 UTC from IEEE Xplore.  Restrictions apply. 


		2022-08-25T00:49:36-0400
	Preflight Ticket Signature




